Data & Society > our work > paper > Combatting Police Discrimination in the Age of Big Data

paper | 04.02.17

Combatting Police Discrimination in the Age of Big Data

Sharad Goel, Maya Perelman, Ravi Shroff, David Alan Sklansky

Sharad Goel, Maya Perelman, D&S fellow Ravi Shroff, and David Alan Sklansky examine a method that can “reduce the racially disparate impact of pedestrian searches and to increase their effectiveness”. Abstract is below:

The exponential growth of available information about routine police activities offers new opportunities to improve the fairness and effectiveness of police practices. We illustrate the point by showing how a particular kind of calculation made possible by modern, large-scale datasets — determining the likelihood that stopping and frisking a particular pedestrian will result in the discovery of contraband or other evidence of criminal activity — could be used to reduce the racially disparate impact of pedestrian searches and to increase their effectiveness. For tools of this kind to achieve their full potential in improving policing, though, the legal system will need to adapt. One important change would be to understand police tactics such as investigatory stops of pedestrians or motorists as programs, not as isolated occurrences. Beyond that, the judiciary will need to grow more comfortable with statistical proof of discriminatory policing, and the police will need to be more receptive to the assistance that algorithms can provide in reducing bias.


Sharad Goel

Maya Perelman

Ravi Shroff

David Alan Skalnsky

04.02.17

Subscribe to the Data & Society newsletter

Support us

Donate
Data & Society Research Institute 36 West 20th Street, 11th Floor
New York, NY 10011, Tel: 646.832.2038

Reporters and media:
[email protected]

General inquiries:
[email protected]

Unless otherwise noted this site and its contents are licensed under a Creative Commons Attribution 3.0 Unported license.