Catherine D’Ignazio and Lauren F. Klein discuss their new book, Data Feminism, with Data & Society’s Director of Research Sareeta Amrute.
How can feminist thinking be operationalized into more ethical and equitable data practices? As data are increasingly mobilized in the service of governments and corporations, their unequal conditions of production, asymmetrical methods of application, and unequal effects on both individuals and groups have become increasingly difficult for data scientists––and others who rely on data in their work––to ignore. But it is precisely this power that makes it worth asking: “Data science by whom? Data science for whom? Data science, with whose interests in mind?”
These are some questions that emerge from what we call data feminism; a way of thinking about data science and its communication that is informed by the past several decades of intersectional feminist activism and critical thought. This talk draws on insights from the authors’ collaboratively crafted book about how challenges to the male/female binary can challenge other hierarchical (and empirically wrong) classification systems; how an understanding of emotion can expand our ideas about effective data visualization; and how the concept of “invisible labor” can expose the significant human efforts required by our automated systems.