Data & Society > Featured on Initiative > Algorithmic Labor and Information Asymmetries: A Case Study of Uber’s Drivers

International Journal of Communication | 10.15.15

Algorithmic Labor and Information Asymmetries: A Case Study of Uber’s Drivers

Alex Rosenblat, Luke Stark

Abstract: This empirical study explores labor in the on-demand economy using the rideshare service Uber as a case study. By conducting sustained monitoring of online driver forums and interviewing Uber drivers, we explore worker experiences within the on-demand economy. We argue that Uber’s digitally and algorithmically mediated system of flexible employment builds new forms of surveillance and control into the experience of using the system, which result in asymmetries around information and power for workers. In Uber’s system, algorithms, CSRs, passengers, semiautomated performance evaluations, and the rating system all act as a combined substitute for direct managerial control over drivers, but distributed responsibility for remote worker management also exacerbates power asymmetries between Uber and its drivers. Our study of the Uber driver experience points to the need for greater attention to the role of platform disintermediation in shaping power relations and communications between employers and workers.

Subscribe to the Data & Society newsletter

Support us

Donate
Data & Society Research Institute 36 West 20th Street, 11th Floor
New York, NY 10011, Tel: 646.832.2038

Reporters and media:
[email protected]

General inquiries:
[email protected]

Unless otherwise noted this site and its contents are licensed under a Creative Commons Attribution 3.0 Unported license.